Abstract

In this paper, we have researched the conduct of non-Newtonian micropolar nanofluid flow through horizontal circular under the impacts of nanoparticles, oxytatic bacterial and Hall current effects. The utilizations of the current investigation are exceptionally powerful in biomedical therapies, for example, obliteration of malignant growth over biological cells by utilizing drug conveyance of nanoparticles and oxytatic microscopic organisms. If there should arise an occurrence of biological nanofluid it’s accepted to concern variable physical parameters which rely on the nanofluid temperature. Implicit Chebyshev pseudospectral (ICPS) technique by helping MATHEMATICA software has been applied to governing nonlinear system of dimensionless partial differential equations (PDEs). The nanofluid velocity, microrotation angular velocity, temperature, motile bacterial density distributions, oxygen concentration, local skin friction coefficient, Nusselt number, and wall motile density gradient distributions are delineated graphically for various variable physical parameters, likewise comparison between certain results in literature and our current output is introduced and great arrangement is found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call