Abstract

The effect of roll compaction/dry granulation on the particle and bulk material characteristics of different magnesium carbonates was evaluated. The flowability of all materials could be improved, even by the application of low specific compaction forces. The tablet properties made of powder and dry granulated magnesium carbonate were compared. Roll compaction/dry granulation resulted in a modified compactibility of the material and, consequently, tablets with reduced tensile strength. The higher relative tap density of the compacted material does not allow a densification to the same extent as the uncompacted powder. The degree of densification during tableting can be expressed as the ratio of the relative tablet density to the relative tap density of the feed material. Increasing the specific compaction forces resulted in higher apparent mean yield pressure, gained from Heckel plots, of all materials analysed. The partial loss of compactibility leads to the demand of low loads during roll compaction. Comparing the tablet properties of different magnesium carbonates reveals an obvious capping disposition. However, it depends on the type of magnesium carbonate, the specific compaction force and also on the tableting force applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call