Abstract

PurposeIn cities with high density, heat is often trapped between buildings which increases the frequency and intensity of heat events. Researchers have focused on developing strategies to mitigate the negative impacts of heat in cities. Adopting green infrastructure and cooling pavements are some of the many ways to promote thermal comfort against heat. The purpose of this study is to improve microclimate conditions and thermal comfort levels in high-density living conditions in Seoul, South Korea.Design/methodology/approachThis study compares six design alternatives of an apartment complex with different paving and planting systems. It also examines the thermal outcome of the alternatives under normal and extreme heat conditions to suggest strategies to secure acceptable thermal comfort levels for the inhabitants. Each alternative is analyzed using ENVI-met, a software program that simulates microclimate conditions and thermal comfort features based on relationships among buildings, vegetation and pavements.FindingsThe results indicate that grass paving was more effective than stone paving in lowering air temperature and improving thermal comfort at the near-surface level. Coniferous trees were found to be more effective than broadleaf trees in reducing temperature. Thermal comfort levels were most improved when coniferous trees were planted in paired settings.Practical implicationsLandscape elements show promise for the improvement of thermal conditions because it is much easier to redesign landscape elements, such as paving or planting, than to change fixed urban elements like buildings and roads. The results identified the potential of landscape design for improving microclimate and thermal comfort in urban residential complexes.Originality/valueThe results contribute to the literature by examining the effect of tree species and layout on thermal comfort levels, which has been rarely investigated in previous studies.

Highlights

  • The quality of life and health of citizens around the world are increasingly threatened by climate change and urban heat islands (UHIs)

  • The results contribute to the literature by examining the effect of tree species and layout on thermal comfort levels, which has been rarely investigated in previous studies

  • The results indicate that mean temperatures in M1 are lower than those in M2, but similar for predicted mean vote (PMV), physiological equivalent temperature (PET) and universal thermal climate index (UTCI) levels, suggesting that grass is more effective than granite in lowering the temperature and improving thermal comfort

Read more

Summary

Introduction

The quality of life and health of citizens around the world are increasingly threatened by climate change and urban heat islands (UHIs). Climate change is mainly attributed to human activities, such as rapid urbanization combined with high population concentrations and excessive consumption of energy (Johansson and Emmanuel, 2006; World Economic Forum, 2017). UHIs are specific parts of a city, usually its center, that have higher temperatures than the surrounding areas (Oke, 1982). They are usually caused by concrete or asphalt surface conditions and human activities in urban areas (Sahana et al, 2019)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call