Abstract
Patients advise their peers on how to cope with their illness in daily life on online support groups. To date, no efforts have been made to automatically extract recommended coping strategies from online patient discussion groups. We introduce this new task, which poses a number of challenges including complex, long entities, a large long-tailed label space, and cross-document relations. We present an initial ontology for coping strategies as a starting point for future research on coping strategies, and the first end-to-end pipeline for extracting coping strategies for side effects. We also compared two possible computational solutions for this novel and highly challenging task; multi-label classification and named entity recognition (NER) with entity linking (EL). We evaluated our methods on the discussion forum from the Facebook group of the worldwide patient support organization ‘GIST support international’ (GSI); GIST support international donated the data to us. We found that coping strategy extraction is difficult and both methods attain limited performance (measured with F1 score) on held out test sets; multi-label classification outperforms NER+EL (F1=0.220 vs F1=0.155). An inspection of the multi-label classification output revealed that for some of the incorrect predictions, the reference label is close to the predicted label in the ontology (e.g. the predicted label ‘juice’ instead of the more specific reference label ‘grapefruit juice’). Performance increased to F1=0.498 when we evaluated at a coarser level of the ontology. We conclude that our pipeline can be used in a semi-automatic setting, in interaction with domain experts to discover coping strategies for side effects from a patient forum. For example, we found that patients recommend ginger tea for nausea and magnesium and potassium supplements for cramps. This information can be used as input for patient surveys or clinical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.