Abstract

Despite the long history of research on xylem structure and function, there are no reports in the literature explaining how xylem vessel elements began conducting water just after their maturation. This study was conducted to demonstrate the anatomical arrangement of newly matured vessels, looking specifically for the first pathways connecting newly matured vessels to the transpiration stream. Using the developing stems of Paraserianthes lophantha (Willd.) I.C.Nielsen as the experimental system, the course of vessel differentiation and maturation along the developing bundles was followed by using the dye-pressure method. Water pathways from newly matured vessels to other functioning vessels were directly visualized by the technique of single-vessel dye injection. Some isolated newly matured vessels from the transpiration stream were detected using two apoplastic tracers. The results of this study converge to support the hypothesis that the movement of water in the newly matured vessels depends completely on lateral contacts with other functioning vessels via vessel-to-vessel paths or vessel relays. In cases where the lateral pathways were absent, the flow within the newly matured vessels was substantially blocked resulting in a significant hydraulic isolation of the newly matured vessels. These results might contribute to a better understanding of the pattern of water movement within the developing xylem systems, and underscore that xylem vessels start conducting water through lateral transport, although their primary function is the axial transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call