Abstract

Chemiluminescence is the emission of light as a result of a nonadiabatic chemical reaction. The present work is concerned with understanding the yield of chemiluminescence, in particular how it dramatically increases upon methylation of 1,2-dioxetane. Both ground-state and nonadiabatic dynamics (including singlet excited states) of the decomposition reaction of various methyl-substituted dioxetanes have been simulated. Methyl-substitution leads to a significant increase in the dissociation time scale. The rotation around the O-C-C-O dihedral angle is slowed; thus, the molecular system stays longer in the "entropic trap" region. A simple kinetic model is proposed to explain how this leads to a higher chemiluminescence yield. These results have important implications for the design of efficient chemiluminescent systems in medical, environmental, and industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call