Abstract

Previous results from this laboratory have shown that human infants (<12 mo old) respond appropriately to transient changes in sensory input during stepping. We examined how infants adapted to a more enduring change in sensory input by applying load to one limb during stepping. A small weight (500-900 g) was strapped around the lower leg of infants aged 3-11 mo. Stepping with the weight on was recorded on the treadmill for a period of 0.5-3 min. The weight was then quickly detached during stepping, and the immediate response to unexpected loss of the weight recorded. Three-segment dynamic analysis of leg motion was used to estimate hip, knee, and ankle torques during swing in the sagittal plane. All infants adapted to the additional load on the leg by immediately increasing the generation of hip and knee flexor muscle torques. When the weight was removed, 7 of the 22 infants tested exhibited an after-effect (high stepping) in the first step after removal of the weight. The after-effect was manifested as an increase in toe trajectory height and hip flexion and coincided with higher hip flexor muscle torque in early swing. In an additional series of control experiments using seven infants, after-effects were shown to be unrelated to a sudden change in cutaneous input with removal of the weight. The presence of an after-effect indicates that some infants made an enduring adaptation to their stepping pattern that is revealed with the unexpected removal of the weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.