Abstract

In a range of settings, human operators make decisions with the assistance of automation, the reliability of which can vary depending upon context. Currently, the processes by which humans track the level of reliability of automation are unclear. In the current study, we test cognitive models of learning that could potentially explain how humans track automation reliability. We fitted several alternative cognitive models to a series of participants’ judgements of automation reliability observed in a maritime classification task in which participants were provided with automated advice. We examined three experiments including eight between-subjects conditions and 240 participants in total. Our results favoured a two-kernel delta-rule model of learning, which specifies that humans learn by prediction error, and respond according to a learning rate that is sensitive to environmental volatility. However, we found substantial heterogeneity in learning processes across participants. These outcomes speak to the learning processes underlying how humans estimate automation reliability and thus have implications for practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.