Abstract

AbstractOutbreak densities of autumnal moth, Epirrita autumnata (Borkhausen) (Lepidoptera: Geometridae), lead to high larval crowding. Phenotypic responses of E. autumnata to larval crowding and to food quality were studied by measuring growth and consumption as well as pupal weight and fecundity. Crowding may trigger increased consumption and faster development to avoid impending food shortage on good quality food. This is suggested by the result that on a good‐quality diet, the growth of crowded larvae was better than that of solitary larvae, though they did not consume more food than solitary larvae. Crowded larvae also completed the last instar earlier than solitary larvae. The fecundity of crowded autumnal moths was not lower than the fecundity of solitarily grown autumnal moths. This may provide conditions for extra rapid population build‐up of E. autumnata. During the population increase phase the crowding effect may facilitate larval performance; however, at peak density the crowding starts to have negative effects on the performance of larvae. On a poor‐quality diet, the performance of crowded and solitary larvae did not differ. The growth of larvae was better on a good‐quality diet than on a poor‐quality diet, due to higher efficiency in food utilization. Larvae feeding on low‐quality diet did not prolong their development time, but pupated at smaller size; this resulted in lower fecundity. A decrease in food quality can be seen as a cue of oncoming food shortage and resource depletion; it may be advantageous to pupate at a smaller size and ensure survival till reproduction, rather than risk prolonging development to achieve larger size and higher fecundity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call