Abstract
AbstractGas chimneys are key pathways for geofluid vertical migration; therefore, deciphering their formation and evolution is crucial for hydrocarbon exploration and geohazard risk assessment. However, the influences of ambient conditions (e.g. bathymetry, tectonics, sediment supply flux) on gas chimney development have not been thoroughly investigated. Using high‐resolution 3D seismic data, we have identified 59 gas chimneys beneath the Shenhu Slope (a gas hydrate test production area on the northern South China Sea margin), 35 of which intersect faults. Above fault interfaces, internal seismic structures are dominated by chaotic discontinuous reflections. Internal structures below interfaces display more continuous reflections, which are also apparent in gas chimneys, not intersecting faults. A higher degree of chaotic or discontinuous seismic reflections may indicate more fragmented networks. This may occur due to increased fluid flow along faults and concomitant fluid overpressure. The present‐day undulating seafloor comprises the inter‐canyon (IT) region, intra‐canyon (IN) region and flat slope (FD) region downstream of canyons. Gas chimneys beneath IT and IN regions exhibit elongated elliptical shapes in the plane, with the long axis azimuth (sub‐) parallel to the main strike of canyons. Chimneys beneath the IT region have larger heights than those beneath the IN and FD regions. Thicker sediment in the IT region corresponds to a higher overburden pressure, which may induce stronger overpressure in the subsurface reservoir region. This overpressure may promote chimneys gathering in the IT region. Canyons' main directions are likely to limit hydraulic fracturing due to maximum gradient boundaries between overlying sediment stress fields. This study provides insights into gas chimney distribution, morphology and structure evolution in relation to bathymetry and fault conditions. It contributes to an improved understanding of how geofluids migrate in marginal ocean basins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.