Abstract

Expansins are plant cell wall-loosening proteins that promote cell growth and are essential for many critical developmental processes and stress responses. The molecular basis for expansin action is uncertain. Recently, it has been proposed that expansins loosen the wall by means of the generation of mobile conformational defects at the surface of cellulose microfibrils. The present work addresses this hypothesis by elaborating three assumptions: (1) microfibril–matrix interfaces cause steep stress gradients on the microfibril surface, (2) stress gradients drive the motion of conformational defects along the microfibril surface toward the microfibril–matrix interfaces, and (3) the approach of the defects to the microfibril–matrix interfaces facilitates the dissociation of matrix polysaccharides from cellulose microfibrils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call