Abstract

Environmental regulation policies are being continuously enriched today. To effectively improve green innovation efficiency through environmental regulations, it is urgent to better understand the impact of different environmental regulations on green innovation efficiency (GIE). However, due to the defects of previous methods for measuring GIE, existing studies may have deviations when analysing the effect of environmental regulations on GIE. To fill this gap, using Shaanxi, China, as a case study, the present study proposes a network data envelopment analysis (DEA) model based on neutral cross-efficiency evaluation to accurately measure the GIE of Shaanxi during the period of 2001–2017. On this basis, this study further analysed the impact of different types of environmental regulations on GIE from three aspects: causality, evolutionary relationships, and effect paths. The results indicate that (1) the GIE of Shaanxi Province showed a “fluctuation-slow growth-steady growth” trend during 2001–2017, and after 2014, the problem of an uncoordinated relationship between technology research and design (R&D) and technology transformation began to appear; (2) there was a linear evolutionary relationship between command-and-control environmental regulation and GIE and a “U”-shaped evolutionary relationship between market-based/voluntary environmental regulation and GIE; and (3) command-and-control environmental regulation and voluntary environmental regulation affected GIE mainly at the technology R&D stage, while market-based environmental regulation ran through the entire process of green innovation activities. This study improves the evaluation methods and theoretical systems of GIE and provides the scientific basis for government decision-makers to formulate environmental regulation policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.