Abstract

ABSTRACTMnO nanoparticles (NPs) were surface functionalized by two different approaches, (1) using a dopamine-poly(ethylene glycol) (PEG) (DA-PEG) ligand and (2) by encapsulation within a thin silica shell applying a novel approach. Both MnO@DA-PEG and MnO@SiO2 NPs exhibited excellent long-term stability in physiological solutions. In addition, the cytotoxic potential of both materials was comparatively low. Furthermore, owing to the magnetic properties of MnO NPs, both MnO@DA-PEG and MnO@SiO2 lead to a shortening of the longitudinal relaxation time T1 in MRI. In comparison to the PEGylated MnO NPs, the presence of a thin silica shell led to a greater stability of the MnO core itself by preventing excessive Mn ion leaching into aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.