Abstract
Land surface temperature (LST) and land surface albedo (LSA) are the two key regional and global climate-controlling parameters; assessing their behavior would likely result in a better understanding of the appropriate adaptation strategies to mitigate the consequences of climate change. This study was conducted to explore the spatiotemporal variability in LST and LSA across different land use/cover (LULC) classes in northwest Iran. To do so, we first applied an object-oriented algorithm to the 10 m resolution Sentinel-2 images of summer 2019 to generate a LULC map of a 3284 km2 region in northwest Iran. Then, we computed the LST and LSA of each LULC class using the SEBAL algorithm, which was applied to the Landsat-8 images from the summer of 2019 and winter of 2020. The results showed that during the summer season, the maximum and minimum LSA values were associated with barren land (0.33) and water bodies (0.11), respectively; during the winter season, the maximum LSA value was observed for farmland and snow cover, and the minimum value was observed in forest areas (0.21). The maximum and minimum LST values in summer were acquired from rangeland (37 °C) and water bodies (24 °C), respectively; the maximum and minimum values of winter values were detected in forests (4.14 °C) and snow cover (−21.36 °C), respectively. Our results revealed that barren land and residential areas, having the maximum LSA in summer, were able to reduce the heating effects to some extent. Forest areas, due to their low LSA and high LST, particularly in winter, had a greater effect on regional warming compared with other LULC classes. Our study suggests that forests might not always mitigate the effects of global warming as much as we expect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.