Abstract

Due to an increased need for new immunomodulatory agents, many previously known molecules have been structurally modified in order to obtain new drugs, preserving at the same time some of the benevolent characteristics of the parent molecule. This study aimed to evaluate the immunomodulatory potential of a selected library of bile acid derivatives (BAD) using a broad spectrum of assays, evaluating rat peritoneal macrophages viability, cell membrane damage, lysosomal and adhesion function, and nitric oxide and cytokine production as a response to lipopolysaccharide stimulation. Also, in silico studies on two bile acid-activated receptors were conducted and the results were related to the observed in vitro effects. All tested BAD exerted significant toxicity in concentrations higher than 10 μM, which was determined based on mitochondria and cell membrane damage in a panel of assays. On the other hand, at lower concentrations, the tested BAD proved to be immunomodulatory since they affected lysosomal function, cell adhesion capacities and the ability to produce inflammatory cytokines in response to a stimulus. One of the compounds proved to exhibit significant toxicity toward macrophages, but also caused a concentration-dependent decrease in nitric oxide levels and was identified as a potential farnesoid X receptor agonist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call