Abstract
Bacterial operons often contain intergenic transcription terminators that terminate some, but not all, RNA polymerase molecules. In these operons, the level of terminator readthrough determines downstream gene expression and helps establish protein ratios among co-regulated genes. Despite its critical role in maintaining stoichiometric gene expression, terminator strength remains difficult to predict from DNA sequence. The necessary features of a major class of bacterial terminators - intrinsic terminators - have been known for half a century, but a strong sequence-function model has yet to be developed. Here, we summarize high-throughput approaches for probing the sequence determinants of intrinsic termination efficiency and discuss the impact of trans-acting factors on this sequence-function relationship. Building on the main lessons from these studies, we map out the experimental challenges that must be circumvented to establish a quantitative model for termination efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.