Abstract

The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by rad ( data points). At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ( segments), this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.

Highlights

  • The goal of the present study is to describe accurately the effect of support inclination on the ants Lasius niger’s motion in terms of their behavioral decisions, namely how the directional information given by the graviception continuously affects their decision process about where to go

  • We have first revealed population level statistics which show that the support inclination affects the ants’ dispersal, and we propose in the end a behavioral model of their random walk that embeds the influence of this inclination on their decision about where to move to, and for how long: the extended Boltzmann Walker model

  • The standard Boltzmann Walker model is a model of reference to describe the random walk of ants on a horizontal plane

Read more

Summary

Introduction

The goal of the present study is to describe accurately the effect of support inclination on the ants Lasius niger’s motion in terms of their behavioral decisions, namely how the directional information given by the graviception continuously affects their decision process about where to go. This study fits in a series of works devoted to the modeling of collective building processes in social insects [1,2] Such processes require that individuals (ants, termites) transport tiny loads of material from one place to another. In corpse aggregation [1], ants pick and carry corpses around and are more prone to drop their load in places where many corpses were dropped before, so that the more corpses there are at some place, the more additional corpses will be dropped there In the end, this amplification process leads to the formation of corpse aggregates. A full description of the individual transports requires the identification of the local decision of picking/dropping a load of material, as well as a detailed description of the paths taken by individuals

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call