Abstract

Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar detrital environments, and if supported may assist in explaining the production of vector populations in nature.

Highlights

  • Food quality has clear effects on performance of consumers, and diet has the potential to be an important factor for the evolution and diversification of life forms

  • We examined the performance of A. aegypti, A. albopictus, and C. quinquefasciatus grown on two common detritus types found in containers, invertebrate carcasses and senescent deciduous leaves, at different ratios

  • This difference was significant in A. aegypti and A. albopictus, with adult males and females from leaf-only containers (0:10) taking the longest time to develop compared to other detritus treatment levels (Fig 1A and 1B)

Read more

Summary

Introduction

Food quality has clear effects on performance of consumers, and diet has the potential to be an important factor for the evolution and diversification of life forms. Food itself can be considered in light of its elemental composition and its contribution to consumer nutrient composition, helping to achieve a deeper understanding of consumer properties at all levels of organization [1] In both aquatic and terrestrial systems, primary productivity provides the bulk of the resources available to consumers. Detrital inputs vary in their composition and rates of decomposition, and serve as a resource for the growth of fungi, bacteria, and protozoans, all of which are key food resources for invertebrates [5,6,7] These detritus types can vary considerably in their nutrient content [8, 9], and produce variable effects on the performance of consumers [9, 10]. What remains unknown in these systems is how nutrient signatures of consumers vary with detritus type, or how much variation in those signatures exist among species

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.