Abstract
An effective method for fabrication of long range ordered micro- and nanostructures on surfaces is to control the interactive crystallisation of block copolymers. In this study, the influence of different initial mesophases of a double crystalline polyethylene-block-poly (ethylene oxide) (PE-b-PEO) diblock co-oligomer on the interactive crystallisation process was studied using synchrotron radiation X-ray diffraction (SAXS/WAXD), in situ optical microscopy and differential scanning calorimetric analysis (DSC). According to the applied annealing procedure, different PE-b-PEO initial mesophases, i.e., disordered, cylindrical and spherical, have been induced. In all cases, the subsequent PEO crystallisation disrupted these initial microdomains and transformed them into crystalline lamellar morphologies with the same long periods. However, the different initial mesophases significantly affected the PEO crystallisation kinetics due to different topological confinements. An initial disordered mesophase induced the highest PEO crystallisation rate because PEO nucleation and crystal growth were limited only by chain diffusion. For an initial spherical or cylindrical mesophase, decreased PEO crystallisation rates were observed. Here, the chain diffusion was decreased by the microdomain structure. For an initial cylindrical mesophase, the earlier formed PE crystals act as a template for the subsequent PEO crystallisation and, thus, increased the PEO crystallisation as compared to the spherical mesophase where the PE was amorphous. This study demonstrates that the topological confinement of the block copolymer's initial mesophase strongly influences the crystallisation kinetics and, thus, the structures formed at the surface of drop-casted films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.