Abstract

The effect of hyperphosphataemia on serum calcium regulation in renal failure has not been well studied in a setting in which hypercalcaemia is not parathyroid hormone (PTH) mediated. In azotemic rats with a normal serum calcium concentration, an increased dietary phosphate burden affects serum calcium regulation because of its effects on skeletal resistance to PTH, calcitriol production, and possibly intestinal calcium absorption. Our goal was to determine how hyperphosphataemia affected the development of hypercalcaemia during calcitriol-induced hypercalcaemia and PTH suppression in azotemic rats with established hyperparathyroidism. Rats underwent a two-stage 5/6 nephrectomy or corresponding sham operations. After surgery, rats were given a high phosphate diet (P 1.2%) for 4 weeks to exacerbate hyperparathyroidism and were then changed to a normal diet (P 0.6%) for 2 weeks to normalize serum calcium values in the azotemic rats. At week 7, rats were divided into five groups and sacrificed after receiving three intraperitoneal doses of calcitriol (CTR, 500 pmol/100 g) or vehicle at 24 h intervals. The five groups and dietary phosphate content were: group 1, normal renal function (NRF)+0.6% P+vehicle; group 2, NRF+0.6% P+CTR; group 3, renal failure (RF)+0.6% P+vehicle; group 4, RF+1.2% P+CTR; and group 5, RF+0.6% P+CTR. Both the 0.6% and 1.2% phosphate diets contained 0.6% calcium. Serum creatinine values were increased (P<0.05) in 5/6 nephrectomized rats (groups 3, 4 and 5), as were serum calcium values (P<0.05) in CTR-treated rats (groups 2, 4 and 5) and serum phosphate values (P<0.05) in CTR-treated azotemic rats (groups 4 and 5). Serum PTH values were suppressed (P<0.05) in CTR-treated hypercalcemic rats (groups 2, 4 and 5) and increased (P<0.05) in azotemic rats not given CTR (group 3). In the azotemic groups (groups 3, 4 and 5), an inverse correlation was present between serum calcium and phosphate in each group, despite a wide variation in serum calcium values. The slope of the inverse relationship between serum calcium and phosphate was steeper in CTR-treated azotemic rats on a 1.2% phosphate (group 4) diet than on a 0.6% phosphate (group 5) diet (P=0.02). Thus, for a similar increase in the serum phosphate concentration, serum calcium values decreased more in group 4 than in group 5. The independent effect of dietary phosphate on serum calcium values was also confirmed by analysis of covariance. Finally, the serum calcium concentration was shown to be greater for any given serum phosphate value in CTR-treated rats than in those not on CTR. In azotemic rats with calcitriol-induced hypercalcaemia, the magnitude of hypercalcaemia is affected by: (i) the serum phosphate concentration; and (ii) differences in dietary phosphate content. Calcitriol administration also acts to shift upwards the relationship between serum calcium and phosphate so that a higher serum calcium concentration can be maintained for any given serum phosphate value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call