Abstract

This article compares molecular properties and atomic properties defined by the quantum theory of atoms in molecules (QTAIM) obtained from three underlying levels of theory: MP2(full), density functional theory (DFT) (B3LYP), and Hartree-Fock (H-F). The same basis set (6-311++G(d,p)) has been used throughout the study. The calculations and comparisons were applied to a set of 30 small molecules representing common fragments of biological molecules. The molecular properties investigated are the energies and the electrostatic moments (up to and including the quadrupoles), and the atomic properties include electron populations (and atomic charge), atomic dipolar and quadrupolar polarizations, atomic volumes, and corrected and raw atomic energies. The Cartesian distance between dipole vectors and the Frobenius distance between the quadrupole tensors calculated at the three levels of theory provide a measure of their correlation (or lack thereof). With the exception of energies (atomic and molecular), it is found that both DFT and H-F are in excellent agreement with MP2, especially with regards to the electrostatic mutipoles up to the quadrupoles, but DFT and MP2 agree better in almost all studied properties (with the exception of molecular geometries). QTAIM properties whether obtained from H-F, DFT(B3LYP), or MP2 calculations when used in the construction of empirical correlations with experiment such as quantitative structure-activity-(or property)-relationships (QSAR/QSPR) are equivalent (because the properties calculated at the three levels are very highly correlated among themselves with r(2) typically >0.95, and therefore preserving trends). These results suggest that the massive volume of results that were published in the older literature at the H-F level is valid especially when used to study trends or in QSAR or QSPR studies, and, as long as our test set of molecules is representative, there is no pressing need to re-evaluate them at other levels of theory except when inadequate basis sets were used by today's standards. Extensive tabulation of molecular and atomic properties at the three theoretical levels is available in the Supporting Information, including optimized geometries, molecular energies, virial ratios, molecular electrostatic moments up to and including hexadecapoles, atomic populations, atomic volumes, atomic electrostatic moments up to and including the quadrupoles, and atomic energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.