Abstract

Pacific oysters Crassostrea (Magallana) gigas have been successfully invading ecosystems worldwide. As an ecosystem engineer, they have the potential to substantially impact on other species and on functional processes of invaded ecosystems. Engineering strength depends on oyster density in space and time. Density has not yet been studied on the extent of reef structural dynamics. This study assessed abundance of naturalized Pacific oysters by shell length (SL) of live individuals and post-mortem shells at six sites over six consecutive years during post-establishment. Individual biomass, i.e. live wet mass (LWM), flesh mass (FM) and live shell mass (SM LIVE), were determined from a total of 1.935 live oysters in order to estimate areal biomass. The generic term density attribute was used for SL-related population categories and the biomass variables LWM, FM, SM LIVE and SM. As the oyster invasion modulated resident Mytilus edulis beds, the study was supplemented by contemporaneously assessed data of mussels and corresponding analyses. Interrelations of abundance and areal biomass revealed distinct linkages between specific density attributes. Most importantly, large individuals were identified as intrinsic drivers for the determination of areal biomass. Additionally, allometry of large oysters differed from small oysters by attenuated scaling relations. This effect was enhanced by oyster density as results showed that crowding forced large individuals into an increasing slender shape. The significant relationship between the density attributes large oyster and biomass enabled a classification of reef types by large oyster abundance. Reef type (simple or complex reef) and oyster size (small or large) were considered by implementing a novel concept of weighted twin functions (TF) for the relationship between SL and individual biomass. This study demonstrates that the interplay of scaling parameters (scalar, exponent) is highly sensitive to the estimation of individual biomass (shape) and that putative similar scaling parameters can exceedingly affect the estimation of areal biomass. For the first time, this study documents the crucial relevance of areal reference, i.e. cluster density (CD) or reef density (RD), when comparing density. RD considers reef areas devoid of oysters and results from CD reduced by reef coverage (RC) as the relative reef area occupied by oysters. A compilation of density attributes at simple and complex reefs shall serve as a density guide. Irrespective of areal reference, oyster structural density attributes were significantly higher at complex than at simple reefs. In contrast, areal reference was of vital importance when evaluating the impact of engineering strength at ecosystem-level. While mussel CD was similar at both reef types, RD at complex reefs supported significantly more large mussels and higher mussel biomass than at simple reefs. Although mussels dominated both reef types by abundance of large individuals, oysters were the keystone engineers by dominating biomass. The prominent status of large oysters for both allometric scaling and density, presumably characteristic for Pacific oyster populations worldwide, should be considered when conducting future investigations. The effort of monitoring will substantially be reduced as only large oysters have to be counted for an empirical characterization of Pacific oyster reefs. The large oyster concept is independent of sampling season, assessment method or ecosystem, and is also applicable to old data sets. Harmonization on the proposed density attributes with a clear specification of areal reference will allow trans-regional comparisons of Pacific oyster reefs and will facilitate evaluations of engineering strength, reef performance and invasional impacts at ecosystem-level.

Highlights

  • The Pacific oyster Crassostrea (Magallana) gigas belongs to the most globalized marine invertebrates and is one of the most successful marine invaders worldwide

  • Large live oyster reef density (RD) was related to the sum of their shell length (SL) values, the latter meant to represent the SL distribution of large live oysters, respectively

  • The concept applies to cluster density (CD) as a function of vertical structure and to reef coverage (RC) as a function of horizontal structure, both resulting in reef density (RD) as a function of reef texture

Read more

Summary

Introduction

The Pacific oyster Crassostrea (Magallana) gigas belongs to the most globalized marine invertebrates and is one of the most successful marine invaders worldwide. Oysters are ecosystem engineers as the creation of biogenic structure modulates the availability of resources to other species while biggest effects are attributable to oysters living at high densities, over large areas for a long time (Jones et al 1994). To attribute ecological and functional impacts of Pacific oysters to engineering strength in relation to density, space and time, one has to understand underlying processes of the creation of biogenic structures and the development of reef structural components due to increasing density and progressive engineering (Fig. 1). Increasing cluster density due to increasing numbers of live oysters and post-mortem oyster shells force the immobile filter feeder to grow increasingly vertical while a complex three-dimensional cluster matrix develops. Several clusters and interspersed oyster unoccupied open spaces perform as a bio-geo-morphological unit, encompassing the total area of an oyster reef. A Pacific oyster reef can reach several to some dozen hectares

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call