Abstract

Monitoring levels of genetic diversity in wildlife species is important for understanding population status and trajectory. Knowledge of the distribution and level of genetic diversity in a population is essential to inform conservation management, and help alleviate detrimental genetic impacts associated with recent population bottlenecking. Mitochondrial DNA (mtDNA) markers such as the control region have become a common means of surveying for within-population genetic diversity and detecting signatures of recent population decline. Nevertheless, little attention has been given to examining the mtDNA control region’s sensitivity and performance at detecting instances of population decline. We review genetic studies of bird populations published since 1993 that have used the mtDNA control region and reported haplotype diversity, number of haplotypes and nucleotide diversity as measures of within-population variability. We examined the extent to which these measures reflect differences in known demographic parameters such as current population size, severity of any recent bottleneck and IUCN Red List status. Overall, significant relationships were observed between two measures of genetic diversity (haplotype diversity and the number of haplotypes), and population size across a number of comparisons. Both measures gave a more accurate reflection of recent population history in comparison to nucleotide diversity, for which no significant associations were found. Importantly, levels of diversity only correlated with demographic declines where population sizes were known to have fallen below 500 individuals. This finding suggests that measures of mtDNA control region diversity should be used with a degree of caution when inferring demographic history, particularly bottleneck events at population sizes above N = 500.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.