Abstract

Given a probability distribution in ℝ n with general (nonwhite) covariance, a classical estimator of the covariance matrix is the sample covariance matrix obtained from a sample of N independent points. What is the optimal sample size N=N(n) that guarantees estimation with a fixed accuracy in the operator norm? Suppose that the distribution is supported in a centered Euclidean ball of radius $O(\sqrt{n})$ . We conjecture that the optimal sample size is N=O(n) for all distributions with finite fourth moment, and we prove this up to an iterated logarithmic factor. This problem is motivated by the optimal theorem of Rudelson (J. Funct. Anal. 164:60–72, 1999), which states that N=O(nlog n) for distributions with finite second moment, and a recent result of Adamczak et al. (J. Am. Math. Soc. 234:535–561, 2010), which guarantees that N=O(n) for subexponential distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.