Abstract

Water deficit conditions trigger the production of a chemical signal, the phytohormone abscisic acid (ABA), which coordinates multiple responses at different temporal and spatial scales. Despite the complexity of natural drought conditions, the modulation of ABA signaling could be harnessed to ameliorate the drought performances of crops in the face of increasingly challenging climate conditions. Based on recent studies, increasing ABA sensitivity can lead to genotypes with improved drought resistance traits, with sustained biomass production in water-limiting environments and little or no costs with respect to biomass production under optimal conditions. However, variations in ABA production and sensitivity lead to changes in various aspects of reproductive development, including flowering time. Here we provide an updated summary of the literature on ABA-related genes in tomato and discuss how their manipulation can impact water-deficit-related responses and/or other developmental traits. We suggest that a better understanding of specific ABA components’ function or their expression may offer novel tools to specifically engineer drought resistance without affecting developmental traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call