Abstract

A matrix of anomerically pure glucose-based surfactants have been synthesized and their thermotropic and lyotropic liquid crystalline phase behavior, and air-aqueous solution interfacial adsorption were investigated. The surfactants, which represent the major components of the Fischer synthesis products, were the n-octyl, n-decyl and n-dodecyl homologues of alkyl α-d- and β-d-glucoside and alkyl β-d-maltoside. The matrix allowed the investigation of the effects of alkyl chain length, headgroup polymerization, and anomeric configuration on the surfactants' physicochemical properties. Increasing the alkyl chain length increases the hydrophobicity and the dispersion interaction between surfactant molecules, as one would expect, resulting in greater thermal stability of thermotropic and lyotropic phases. Phase transition temperatures are influenced significantly by the anomeric configuration in the shorter octyl derivatives, but to a lesser extent in the longer alkyl chain derivatives. The effect of increasin...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.