Abstract
Reports related to community safety crisis incidents are being escalated and shared on social media and other online digital platforms. These reports must be addressed quickly to concerned organizations to provide welfare support to individuals and communities in crisis, to protect their lives, and to obtain justice. To achieve this, we proposed a framework termed detection of Community Safety Crisis Incidents (CSCI) reports using an attention-based Bidirectional Long Short-term Memory (att-Bi-LSTM). Amharic reports in Ethiopia were selected as the object of study for the implementation of the detection model due to the high CSCI report rate in the region. We gathered the textual data and spoken speech content reports from famous worldwide media websites, Twitter, and YouTube platforms utilizing data crawling techniques. The proposed model achieved 90.93 % accuracy for the text test dataset and 82.10 % accuracy for the voice test dataset on the text-based pre-training model. The model was also tested on English news, yielding an accuracy of 85.92 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Management Data Insights
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.