Abstract

Transformer models have been successfully applied to various natural language processing and machine translation tasks in recent years, e.g. automatic language understanding. With the advent of more efficient and reliable models (e.g. GPT-3), there is a growing potential for automating time-consuming tasks that could be of particular benefit in healthcare to improve clinical outcomes. This paper aims at summarizing potential use cases of transformer models for future healthcare applications. Precisely, we conducted a survey asking experts on their ideas and reflections for future use cases. We received 28 responses, analyzed using an adapted thematic analysis. Overall, 8 use case categories were identified including documentation and clinical coding, workflow and healthcare services, decision support, knowledge management, interaction support, patient education, health management, and public health monitoring. Future research should consider developing and testing the application of transformer models for such use cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.