Abstract
We evaluated three methods for the analysis of functional response data by asking whether a given method could discriminate among functional responses and whether it could accurately identify regions of positive density-dependent predation. We evaluated comparative curve fitting with foraging models, linear least-squares analysis using the angular transformation, and logit analysis. Using data from nature and simulations, we found that the analyses of predation rates with the angular transformation and logit analysis were best at consistently determining the "true" functional response, i.e. the model used to generate simulated data. These methods also produced the most accurate estimates of the "true" regions of density dependence. Of these two methods, functional response data best fulfill the assumptions of logit analysis. Angularly transformed predation rates only approximate the assumptions of linear leastsquares analysis for predation rates between 0.1 and 0.9. Lack-of-fit statistics can reveal inadequate fit of a model to a data set where simple regression statistics might erroneously suggest a good match.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.