Abstract

One-dimensional analysis is presented of solitary positive potential plasma structures whose velocity lies within the range of ion distribution velocities that are strongly populated: "slow" electron holes. It is shown that to avoid the self-acceleration of the hole velocity away from ion velocities it must lie within a local minimum in the ion velocity distribution. Quantitative criteria for the existence of stable equilibria are obtained. The background ion distributions required are generally stable to ion-ion modes unless the electron temperature is much higher than the ion temperature. Since slow positive potential solitons are shown not to be possible without a significant contribution from trapped electrons, it seems highly likely that such observed slow potential structures are indeed electron holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call