Abstract

The present research is aimed at investigating processes associated with learning how to drive safely. We were particularly interested in implicit mechanisms related to the automatic processing system involved in decision making in risky situations (Slovic et al., 2007). The operation of this system is directly linked to experiential and emotional reactions and can be monitored by measuring psychophysiological variables, such as skin conductance responses (SCRs). We focused specifically on the generalization of previously acquired skills to new and never before encountered road scenarios. To that end, we compared the SCRs of two groups of participants engaged, respectively, in two distinctive modes of moped-riding training. The active group proceeded actively, via moped, through several simulated courses, whereas the passive group watched video of the courses performed by the former group and identified hazards. Results indicate that the active group not only demonstrated improved performance in the second session, which involved the same simulated courses, but also showed generalization to new scenes in the third session. Moreover, SCRs to risky scenes, although present in both groups, were detectable in a higher proportion in the active group, paralleling the degree of risk confronted as the training progressed. Finally, the anticipatory ability demonstrated previously (and replicated in the present study), which was evident in the repeated performance of a given scenario, did not seem to generalize to the new scenarios confronted in the last session.

Highlights

  • In the field of road safety research, several studies have gathered indirect and/or direct evidence that supports the idea of the crucial role played by hazard perception in predicting crash likelihood (Horswill, 2016a)

  • Two principal methods are currently employed to improve hazard perception among learners and novice drivers: one involves watching video clips during which the Improving On-Road Hazard Anticipation learners must identify onscreen hazards and the other relies on engaging learners in virtual driving experiences via simulators that administer a variety of hazardous scenarios

  • Post hoc tests showed that all comparisons were significant, thereby confirming that performance improved, both in the second session, and in the third session, when participants had to confront new courses

Read more

Summary

Introduction

In the field of road safety research, several studies have gathered indirect and/or direct evidence that supports the idea of the crucial role played by hazard perception in predicting crash likelihood (Horswill, 2016a). As Horswill (2016b) noted, conducting hazard perception research is not feasible in actual on-road situations, as exposing humans to hazards and the consequent potential dangers for the purpose of research raises ethical and other related issues. For this reason, considerable efforts have been devoted to creating adequate tools for measuring this skill in safe contexts. Participants who received negative emotional feedback in 50% of the trials in which they decided not to brake upon being presented with a risky scenario (i.e., risky decisionmaking behavior) demonstrated safer behavior in the subsequent moped-riding simulator test

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.