Abstract

In this work, we implement a response surface method, for investigating the impact of machining parameters on tool life and wear characteristics. The influence variables also include the temperature on the degradation of tool material. Taylor’s tool life equation based on the cutting speed is evaluated for different tool lift exponents which represent the type of work piece material. Three different types of cooling mediums have been considered for the series of experiments, and hexagonal boron nitride with maximum of 1.25% by volume was used as nano particle lubricant material. The tool life for different materials has been compared to verify the accuracy of tool life predictions. The results showed that with increase in cutting speed, feed rate and depth of cut, the tool life and wear reduced exponentially for cutting speeds between 50 mm/min and 100 mm/min and the maximum tool life was found when the cutting speed was 70 mm/min and feed rate of 0.15 mm/rev. Despite low cutting speeds, the depth of cut increased the tool wear and temperature by 11.1% and 10.4% respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call