Abstract
We present the main findings of two recent studies using high-resolution MHD simulations of supersonic magnetized shear flow layers. First, a strong large-scale coalescence effect partially countered by small-scale reconnection events is shown to dominate the dynamics in a two-dimensional layer subject to Kelvin-Helmholtz (KH) instabilities. Second, an interaction mechanism between two different types of instabilities (KH and current-driven modes) is shown to occur in a cylindrical jet configuration embedded in an helical magnetic field. Finally, we discuss the implications of these results for astrophysical jets survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.