Abstract
Hydrothermal treatment can facilitate hydrolysis of biomass wastes such as algae and livestock manures, by converting high-molecular weight carbohydrates and proteins to monosaccharides and amino acids. However, further decomposition and reciprocal reaction of monosaccharides and amino acids are usually accompanied with hydrothermal treatment, which have negative impacts on microbial fermentation performance. In this study, glucose and glycine were used as model substrates during hydrothermal treatment coupled with semi-continuous hydrogen and methane fermentation. The results showed that thermal decomposition of glucose was stronger than glycine, due to the binary interactions between carbonyl group and amino group. Acidic condition could suppress conversion of intermediate compounds to polymers, thereby improving 5-HMF concentration to 7.59 g/L. Hydrothermal by-products had adverse impacts on hydrogen fermentation stability, resulting in a wide fluctuation of hydrogen production rate of around 0.55 L/L/d. Adding sulfuric acid for treatment would increase the competition of sulphate reducing bacteria, and cause a stuck methane fermentation. Additionally, by-products degradation promoted the growth of hydrogenotrophic and mixotrophic methanogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.