Abstract

The dual-stream model of speech processing describes a cortical network involved in speech processing. However, it is not yet known if the dual-stream model represents actual intrinsic functional brain networks. Furthermore, it is unclear how disruptions after a stroke to the functional connectivity of the dual-stream model's regions are related to speech production and comprehension impairments seen in aphasia. To address these questions, in the present study, we examined two independent resting-state fMRI data sets: (1) 28 neurotypical matched controls and (2) 28 chronic left-hemisphere stroke survivors collected at another site. We successfully identified an intrinsic functional network among the dual-stream model's regions in the control group using functional connectivity. We then used both standard functional connectivity analyses and graph theory approaches to determine how this connectivity may predict performance on clinical aphasia assessments. Our findings provide evidence that the dual-stream model of speech processing is an intrinsic network as measured via resting-state MRI and that functional connectivity of the hub nodes of the dual-stream network defined by graph theory methods, but not overall average network connectivity, is weaker in the stroke group than in the control participants. In addition, the functional connectivity of the hub nodes predicted linguistic impairments on clinical assessments. In particular, the relative strength of connectivity of the right hemisphere's homologues of the left dorsal stream hubs to the left dorsal hubs, versus to the right ventral stream hubs, is a particularly strong predictor of poststroke aphasia severity and symptomology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.