Abstract
Artificial intelligence capabilities (AIC) can influence supply chain management (SCM) in multiple ways. This study explores how generative artificial intelligence capabilities (GAIC) could affect digital supply chain performance (DSCP) through ambidexterity innovation (AMI), which includes both elements, exploratory and exploitative innovations in the manufacturing firms (MFs) in Jordan as a developing and emerging economy. This study adopted a quantitative methodology for the data collection process applying a cross-sectional approach through testing deductive-hypotheses techniques. 263 valid surveys were used for analysis using hybrid analysis measurements (i.e., PLS-SEM, and CB-SEM). Further, it was applied data reliability, convergent validity, and discriminant validity tests. Additionally, examined the mediating effect of exploratory innovation (EXPI), and exploitative innovation (EXTI) on DSCP. The study findings assured that the proposed direct and indirect causal associations illustrated in the study model were accepted due to that all associations between the dimensions s were statistically significant. The findings of the GAIC supported a positive relationship between GAIC and the DSCP, GAIC on EXPI and EXTI, and EXPI and EXTI on DSCP respectively. Furthermore, the mediating effect of EXPI and EXTI is statistically significant, which was confirmed. This study developed a conceptual model to merge GAIC, AMI, and DSCP. This study provides new outcomes that bridge the existing research gap in the literature by testing the mediation model with a focus on the MF benefits of GAIC to improve levels of EXPI, EXTI, and DSCP in Jordan as a developing and emerging economy. Furthermore, this study is considered unique, as it was the first study in Jordan, and through applying hybrid analysis measurements using both PLS-SEM and CB-SEM methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.