Abstract

Introduction: Cassiduloids play a prominent role in echinoid evolutionary history because they probably are the ancestral group of clypeasteroids. Some extant species are brooding and rare in the environment. Consequently, there are no studies on their maintenance in the laboratory. Objective: Establish an efficient aquarium system for C. mitis, endemic to Brazil, for ontogenetic studies. Methods: Four aquarium systems were built, with 3 replicates each one: (1) with seawater flow [F]; (2) with seawater flow and air injection into sediment [FA]; (3) without seawater flow but with air injection into the sediment [A]; and (4) without both seawater flow and air injection into the sediment [C]. Each experimental aquarium (three per treatment) had two adults. Each of the two sets of experiments lasted about 60 days. Results: We observed low mortality in the first 30 days in all systems and, after 30 days, it was higher in those with air-pumped into the sediment (system A in the first set of experiments, and system FA in the second one). Conclusions: For experiments lasting 30 days, our four systems are suitable. For longer periods, we recommend aquaria with seawater flow and without air-pumps into the sediment.

Highlights

  • Cassiduloids play a prominent role in echinoid evolutionary history because they probably are the ancestral group of clypeasteroids

  • This study aims to establish an efficient aquarium system to maintain C. mitis in laboratory conditions for enough time for developmental studies

  • The population of C. mitis occurs at the beach Praia Vermelha (22o 57’ 18” S; 43o 9’ 48” W) located at the entrance of the Guanabara Bay (Rio de Janeiro State, Brazil)

Read more

Summary

Introduction

Cassiduloids play a prominent role in echinoid evolutionary history because they probably are the ancestral group of clypeasteroids. Objective: Establish an efficient aquarium system for C. mitis, endemic to Brazil, for ontogenetic studies. Methods: Four aquarium systems were built, with 3 replicates each one: (1) with seawater flow [F]; (2) with seawater flow and air injection into sediment [FA]; (3) without seawater flow but with air injection into the sediment [A]; and (4) without both seawater flow and air injection into the sediment [C]. Each of the two sets of experiments lasted about 60 days. Results: We observed low mortality in the first 30 days in all systems and, after 30 days, it was higher in those with air-pumped into the sediment (system A in the first set of experiments, and system FA in the second one). Conclusions: For experiments lasting 30 days, our four systems are suitable. We recommend aquaria with seawater flow and without air-pumps into the sediment

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call