Abstract

PurposeIt is quite possible that financial institutions including life insurance companies would encounter turbulent situations such as the COVID-19 pandemic before policies mature. Constructing models that can generate scenarios for major assets to cover abrupt changes in financial markets is thus essential for the financial institution's risk management.Design/methodology/approachThe key issues in such modeling include how to manage the large number of risk factors involved, how to model the dynamics of chosen or derived factors and how to incorporate relations among these factors. The authors propose the orthogonal ARMA–GARCH (autoregressive moving-average–generalized autoregressive conditional heteroskedasticity) approach to tackle these issues. The constructed economic scenario generation (ESG) models pass the backtests covering the period from the beginning of 2018 to the end of May 2020, which includes the turbulent situations caused by COVID-19.FindingsThe backtesting covering the turbulent period of COVID-19, along with fan charts and comparisons on simulated and historical statistics, validates our approach.Originality/valueThis paper is the first one that attempts to generate complex long-term economic scenarios for a large-scale portfolio from its large dimensional covariance matrix estimated by the orthogonal ARMA–GARCH model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.