Abstract
Life in seasonally changing environments is challenging. Biological systems have to not only respond directly to the environment, but also schedule life history events in anticipation of seasonal changes. The cellular and molecular basis of how these events are scheduled is unknown. Cellular decision-making processes in response to signals above certain thresholds regularly occur i.e. cellular fate determination, apoptosis and firing of action potentials. Binary switches, the result of cellular decision-making processes, are defined as a change in phenotype between two stable states. A recent study presents evidence of a binary switch operating in the pars tuberalis (PT) of the pituitary, seemingly timing seasonal reproduction in sheep. Though, how a binary switch would allow for anticipation of seasonal environmental changes, not just direct responsiveness, is unclear. The purpose of this review is to assess the evidence for a binary switching mechanism timing seasonal reproduction and to hypothesize how a binary switch would allow biological processes to be timed over weeks to years. I draw parallels with mechanisms used in development, cell fate determination and seasonal timing in plants. I propose that the adult PT is a plastic tissue, showing a seasonal cycle of cellular differentiation, and that the underlying processes are likely to be epigenetic. Therefore, considering the mechanisms behind adult cellular plasticity offers a framework to hypothesize how a long-term timer functions within the PT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.