Abstract
If a prime p is decomposed as x 2 + 4 y 2 {x^2} + 4{y^2} , the power 2 m | | y {2^m}||y can be determined by an algorithm of polynomial efficiency based on use of singular moduli from the modular equation of order 2. The properties of the modular functions required in this algorithm are simple branching and parametrization properties, which in turn define the modular functions and equations (essentially uniquely). The well-known equations of "Klein’s Icosahedron" and their Hecke analogues come into play here, and to some extent they can be uniquely characterized in this fashion. The extraneous cases which arise are in some sense interesting analogues of modular equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.