Abstract

Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.

Highlights

  • Large dams alter native biodiversity in aquatic ecosystems by modifying geomorphic, hydrological, and ecological connectivity [1, 2]

  • The Upper Neosho River network is located within the 7,000 km2 Upper Neosho River basin and includes the 5th order Upper Neosho and 6th order Lower Cottonwood Rivers [27] (Fig 2B)

  • Mean wetted width was greater upstream at all sites (Fig 4), upstream reaches were significantly wider than downstream reaches at two of the five dams for which we had upstream and downstream data (Ruggles dam (P = 0.0006, Fig 4C); Soden dam (P

Read more

Summary

Introduction

Large dams alter native biodiversity in aquatic ecosystems by modifying geomorphic, hydrological, and ecological connectivity [1, 2]. Low-head dams, the potential impacts on geomorphic and ecological impacts are infrequently examined and poorly understood. Unless scientists and managers can distinguish impacted from unimpacted areas adjacent to dams, environmental professionals will be unable to undertake appropriate research or propose effective management actions to evaluate, understand, and remedy potential fragmentation by low-head dams. We use geomorphic paradigms and metrics to test predictions about the longitudinal extent of low-head dam impacts (hereafter the dam footprint) within the Upper Neosho river network, KS, United States of America. The resulting insights on the size of geomorphic impacts, across-dam variation, and context of this variation will fill important information gaps about these small, but abundant, ecological disturbances

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call