Abstract

This article describes the contribution of artificial intelligence (AI) to the literature collection process, which has become more efficient and more homogeneous. In this context, the researcher will receive his literature not only according to his field. Moreover, the literature is strongly linked to scientific and academic ambitions. AI through its deep learning techniques offers the possibility of speeding up the process of collecting augmented literature via an approach based on the annotation of scientific names and none-scientific names related to the field. AI provides original or reproduced research avenues with reliable and precise results. In this article, we have highlighted how to develop conceptual framework based on scientific and none-scientific names related to the area of expertise, all ensuring the reproducibility, reliability and accuracy of the study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.