Abstract

The polymerization mechanism of photochemically mediated Cu-based atom-transfer radical polymerization (ATRP) was investigated using both experimental and kinetic modeling techniques. There are several distinct pathways that can lead to photochemical (re)generation of Cu(I) activator species or formation of radicals. These (re)generation pathways include direct photochemical reduction of the Cu(II) complexes by excess free amine moieties and unimolecular reduction of the Cu(II) complex, similar to activators regenerated by electron-transfer (ARGET) ATRP processes. Another pathway is photochemical radical generation either directly from the alkyl halide, ligand, or via interaction of ligand with either monomer or with alkyl halides. These photochemical radical generation processes are similar to initiators for continuous activator regeneration (ICAR) ATRP processes. A series of model experiments, ATRP reactions, and kinetic simulations were performed to evaluate the contribution of these reactions to the photochemical ATRP process. The results of these studies indicate that the dominant radical (re)generation reaction is the photochemical reduction of Cu(II) complexes by free amines moieties (from amine containing ligands). The unimolecular reduction of the Cu(II) deactivator complex is not significant, however, there is some contribution from ICAR ATRP reactions involving the interaction of alkyl halides and ligand, ligand with monomer, and the photochemical cleavage of the alkyl halide. Therefore, the mechanism of photochemically mediated ATRP is consistent with a photochemical ARGET ATRP reaction dominating the radical (re)generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.