Abstract

A particularly unusual visual system exists in the visually guided aquatic predator, the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). The question arises: how does this peculiar visual system function? A series of experiments suggests that their principal eyes (E1 and E2) are highly specialized for hunting. These eyes are tubular and have relatively long focal lengths leading to high image magnification. Their retinae are linear, and are divided into distinct green-sensitive distal and UV and polarization-sensitive proximal portions. Each distal retina, moreover, has many tiers of photoreceptors with rhabdomeres the long axis of which are peculiarly oriented perpendicular to the light path. Based on detailed optical investigations, the lenses of these eyes are bifocal and project focused images onto specific retinal tiers. Behavioral experiments suggest that these larvae approach prey within their eyes' near-fields, and that they can correctly gauge prey distances even when conventional distance-vision mechanisms are unavailable. In the near-field of these eyes object distance determines which of the many retinal layers receive the best-focused images. This retinal organization could facilitate an unusual distance-vision mechanism. We here summarize past findings and discuss how these eyes allow Thermonectus larvae to be such successful predators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.