Abstract

Model calculations to investigate the deuteron quadrupolar relaxation in liquid water are performed. Techniques not amenable to experiment, such as switching on and off the intermolecular or intramolecular electric field gradients and simulating rigid liquid water, give insight into the microscopic effects leading to relaxation. In experimental studies it is usually assumed that the deuteron quadrupolar relaxation is governed largely by the reorientational motion of an average electric field gradient, and the error in this assumption is readily extracted from the model calculations. As expected, this error is significant for deuterons in hydrogen bonds. These model calculations should provide a guide to better understanding of quadrupolar relaxation and experimental evaluation of relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.