Abstract
Large Language Models (LLMs) have been adopted for a variety of visualizations tasks, but how far are we from perceptually aware LLMs that can predict human takeaways? Graphical perception literature has shown that human chart takeaways are sensitive to visualization design choices, such as spatial layouts. In this work, we examine the extent to which LLMs exhibit such sensitivity when generating takeaways, using bar charts with varying spatial layouts as a case study. We conducted three experiments and tested four common bar chart layouts: vertically juxtaposed, horizontally juxtaposed, overlaid, and stacked. In Experiment 1, we identified the optimal configurations to generate meaningful chart takeaways by testing four LLMs, two temperature settings, nine chart specifications, and two prompting strategies. We found that even state-of-the-art LLMs struggled to generate semantically diverse and factually accurate takeaways. In Experiment 2, we used the optimal configurations to generate 30 chart takeaways each for eight visualizations across four layouts and two datasets in both zero-shot and one-shot settings. Compared to human takeaways, we found that the takeaways LLMs generated often did not match the types of comparisons made by humans. In Experiment 3, we examined the effect of chart context and data on LLM takeaways. We found that LLMs, unlike humans, exhibited variation in takeaway comparison types for different bar charts using the same bar layout. Overall, our case study evaluates the ability of LLMs to emulate human interpretations of data and points to challenges and opportunities in using LLMs to predict human chart takeaways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.