Abstract

We use a nonsteady-state model to evaluate the effects of community adaptation and sorption kinetics on the fate of linear alkylbenzene sulfonate (LAS) in batch experiments conducted with activated sludge that was continuously fed different concentrations of LAS. We observed a sharp decrease in the biodegradation rate between 30 and 60 minutes and the presence of an LAS residual at the end of the batch experiments. The modeling analysis indicates that these phenomena were caused by relatively slow inter-phase mass transport of LAS. The modeling analyses also showed that the amount of LAS-degrading biomass increased when the continuous activated sludge was fed a higher LAS concentration. Although community adaptation to LAS involved accumulation of more LAS degraders, the increase was not proportional to the feed concentration of LAS, which supports the concept that LAS degraders also utilized portions of the general biochemical oxygen demand (BOD) fed to the continuous activated sludge systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.