Abstract

Ion Channels Voltage-gated sodium (Nav) channels are key players in electrical signaling. Central to their function is fast inactivation, and mutants that impede this cause conditions such as epilepsy and pain syndromes. The channels have four voltage-sensing domains (VSDs), with VSD4 playing an important role in fast inactivation. Clairfeuille et al. determined the structures of a chimera in which VSD4 of the cockroach channel NavPaS is replaced with VSD4 from human Nav1.7, both in the apo state and bound to a scorpion toxin that impedes fast activation (see the Perspective by Chowdhury and Chanda). The toxin traps VSD4 in a deactivated state. Comparison with the apo structure shows how interactions between VSD4 and the carboxyl-terminal region change as VSD4 activates and suggests how this would lead to fast inactivation. Science , this issue p. [eaav8573][1]; see also p. [1278][2] [1]: /lookup/doi/10.1126/science.aav8573 [2]: /lookup/doi/10.1126/science.aaw8645

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.