Abstract
With the recent detection of cosmic shear, the most challenging effect of weak gravitational lensing has been observed. The main difficulties for this detection were the need for a large amount of high quality data and the control of systematics during the gravitational shear measurement process, in particular those coming from the Point Spread Function anisotropy. In this paper we perform detailed simulations with the state-of-the-art algorithm developed by Kaiser, Squires and Broadhurst (KSB) to measure gravitational shear. We show that for realistic PSF profiles the KSB algorithm can recover any shear amplitude in the range with a relative, systematic error of . We give quantitative limits on the PSF correction method as a function of shear strength, object size, signal-to-noise and PSF anisotropy amplitude, and we provide an automatic procedure to get a reliable object catalog for shear measurements out of the raw images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.