Abstract
Despite their instability in ethereal solvents, organotitanium hydride catalysts are successfully employed in catalysis at moderate to high temperatures (110 °C), even in the presence of alcohols. It is shown computationally (bond dissociation energy (BDE) analysis and energetic profile for regeneration) and experimentally (EPR studies and kinetic studies), with the specific example of hydrodefluorination (HDF), that despite the long standing belief, regeneration of Ti-H bonds from Ti-F bonds using silanes is endergonic. The resulting low concentration of Ti-H species is crucial for the catalytic stability of those systems. The resting state in the catalysis is a Ti-F species. The most promising silanes for regeneration are not the ones that have the strongest Si-F bond, but the ones that show the largest difference in Si-F and Si-H BDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.